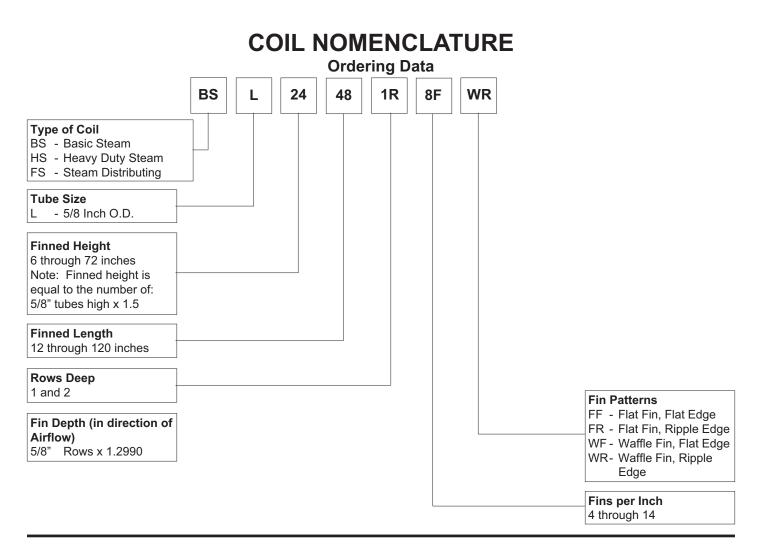


STEAM HEATING COILS 5/8" OD TUBE

Standard • Heavy Duty • Steam Distributing



"The Heat Transfer Experts"

Table Of Contents

General	1
Dimensions	2, 3
Temperature Conversion Factor, Table 1	4
Altitude Conversion Factor, Table 2	4
Basic Formulas	4
Steam Coil Selection Example (using rating table)	4
Steam Coil Rating Table, Table 3	5
Air Pressure Drop, Table 4	5
Air Temperature Rise Correction Factor, Table 5	6
Properties of Saturated Steam, Table 6	6
Steam Coil Selection Example (using rating curves)	7
Steam Coil Rating Curves, Figure 1	8
Coil Weights	9
Application Recommendations	9

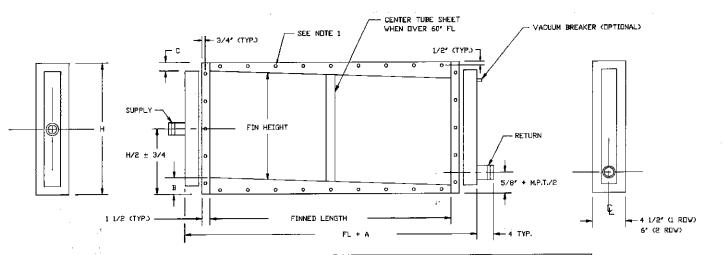
FEATURES — Colmac Steam Coils are available with 5/8" O.D. diameter tubes in one and two row configurations. The tubes have 1-1/2 inch spacing and the two row coils have a staggered tube pattern for efficient heat transfer.

FINS — The Fins are plate type aluminum (copper optional), die formed with a waffle surface and ripple edges. Each fin has formed self-spacing collars completely covering the tube. The collars automatically and precisely space the fins in a uniform manner. Fin spacing of 4 to 14 fins per inch are available. WF and WR fin patterns ARI certified. Minimum fin thickness for 8-14 FPI is .006". Minimum fin thickness for 4-7 FPI or less is .010".

TUBES — The seamless 5/8" diameter copper tubes (cupro-nickel available) are expanded into fin collars to form a rigid mechanical bond. Heavy wall tubing is available for high pressure applications. Copper to copper joints are made with a high temperature brazing alloy, steel joints are made with a bronze brazing alloy.

HEADERS — Inlet and outlet headers are made from heavy wall seamless copper tubing. Headers have die formed collars to provide a strong durable brazing joint. Connectors are wrought copper.

CASING — Mill galvanized casings have die formed extrusions to eliminate wear from expansion and contraction. Prepunched slots are provided on top, bottom, and sides of coil. Stacking flanges are optional.

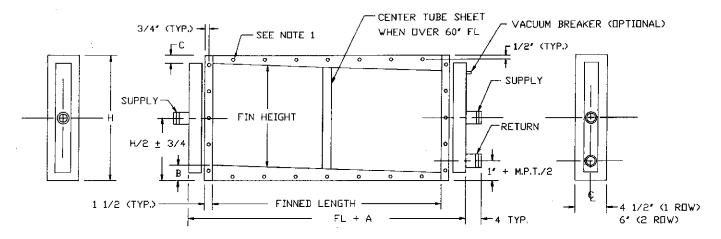

TESTING — All tubes are tested at a minimum of 1500 PSIG. The coil assembly is leak tested at 350 PSIG (BSL), 175 PSIG (FSL) under warm water.

BASIC STEAM — Basic Steam coils are suitable for up to 175 PSIG steam pressure. Supply and return connections are at opposite ends. When tubes are installed vertically the Basic Steam coil provides excellent freeze protection. With tubes horizontal, the Basic Steam coil is used primarily for re-heat applications.

STEAM DISTRIBUTING — 3/8" inner steam distributing tubes provide uniform steam distribution throughout the face of the coil. Supply and return connections are on the same end. When finned length exceeds 72", a second supply connection is provided on the opposite end.

Dimensions For Steam Coils

5/8" Basic, Heavy Duty Steam Heating Coil

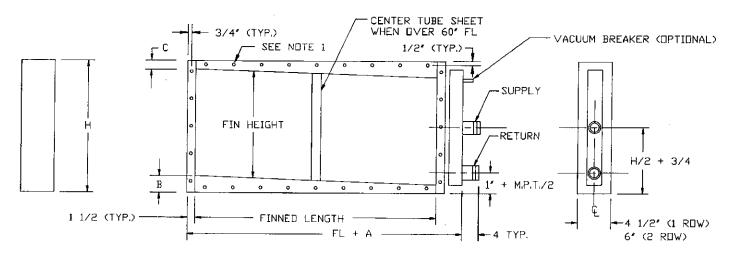

			1 ROV	1 RÖV				2 RDV			2 RDV				
FIN	TUBES	12-72 FIN LENGTH			IGTH 73-120 FINNED LENGTH		12-72 FIN LENGTH			73	-120 FINNED	LENGTH	FINNED LENGTH	DIM'S B PLUS C	
HEIGHT	HIGH	A	SUPPLY	RETURN	A	SUPPLY	RETURN	A	SUPPLY	RETURN	A	SUPPLY	RETURN	12' - 30'	3 1/8
9-18	6-12	7	1 1/4 MPT	1 MPT	7 3/4	1 1/2 MPT	1 1/4 MPT	10 1/4	1 1/2 MPT	1 1/4 MPT	10 1/4	2 MPT	1 1/2 MPT	31" - 60"	3 3/4
21-30	14-21	7 3/4	1 1/2 1.	1 1/4	8 3/4	2 1	1 1/2 '	10 1/4	5 .	1 1/2 1	10 3/4	21/2 *	2 1	61" - 102"	4 3/4
33-45	22-30	8 3/4	2 '	1 1/2 *	9 3/4	2 1/2 *	2 /	10 3/4	2 1/2 *	2 '	11 1/4	3 '	2	103' - 120'	5

NOTE

1. 5/16' DIA HOLES ON 3' CTRS FROM CENTERLINE OF CASING.

2. COIL PITCHED IN CASING TOWARD RETURN END 1/4" PER FOOT OF FINNED LENGTH. B DIM PLUS C DIM PLUS FIN HEIGHT EQUALS H.

5/8" Steam Distributing Coil Over 72" (2 Supplies Required)



FIN	TUBES		1 ROV		2 RDW						
HEIGHT	HIGH	73	-120 FINNED	LENGTH	ENGTH 73-120 FINNED LENGT						
HEIGHT	HIGH	A	SUPPLY	RETURN	A	SUPPLY *	RETURN				
9-18	6-12	9 3/8	1 1/2 MPT	1 1/4 MPT	10 5/8	2 MPT	1 1/2 MPT				
21-30	14-21	10 5/8	2 .	1 1/2 •	10 7/8	21/2 1	2 '				
33-45	22-30	11 7/8	2 1/2 *	2 1	13 1/4	3 '	2 4				

NOTE:

- 1. 5/16" DIA HOLES ON 3" CTRS FROM CENTERLINE OF CASING.
- 2. COIL IS PITCHED IN CASING TOWARD RETURN END 1/4" PER FOOT
- OF FINNED LENGTH. B DIM PLUS C DIM PLUS FIN HEIGHT EQUALS H.
- 3. MINIMUM C DIM IS 1". B = FL/60 + 1" MINIMUM FOR COIL PITCH.

5/8" Steam Distributing Coil Under 71"

FIN	TUBES		1 ROV	/	2 ROW						
			12 -72 FIN LE	ENGTH	12 - 72 FIN LENGTH						
HEIGHT HIGH		А	SUPPLY RETU		A	SUPPLY *	RETURN				
9 - 18	6 - 12	5 3/4	1 1/4 MPT	1 MPT	7	1 1/2 MPT	1 1/4 MPT				
21 - 30	14 - 21	6 1/2	1 1/2 "	1 1/4 "	7	2 "	1 /12 "				
33 - 45	22 - 30	7 1/2	2 "	1 1/2 "	7 3/4	2 1/2 *	2 "				

NOTE:

1. 5/16" DIA HOLES ON 3" CTRS FROM CENTERLINE OF CASING.

 COIL IS PITCHED IN CASING TOWARD RETURN END 1/4" PER FOOT OF FINNED LENGTH. B DIM PLUS C DIM PLUS FIN HEIGHT EQUALS H.
 MINIMUM C DIM IS 1". B = FL/60 + 1" MINIMUM FOR COIL PITCH.

* SUPPLY HEADER SIZE IS ONE SIZE LARGER THE ADAPTER SIZE.

-

Table 1

Temperature Conversion Factor — (A)

Temp. °F	Factor (A)	(T) Temp. °F	Factor (A)
0	1.15	60	1.02
10	1.13	70	1.00
20	1.10	80	.98
. 30	1.08	90	.96
40	1.06	100	.95
50	1.04	110	.93
For Other T	omnoraturan	(A) 530	

For Other Temperatures — (A) =(T) + 460

Table 2

Altitude Conversion Factor — (B)

Alt.—Ft.	Factor (B)	Alt.—Ft.	Factor (B)
0	1.000	3000	.895
500	.982	4000	.864
1000	.965	5000	.832
1500	.947	6000	, 802
2000	.930	7000	.771
2500	.921	8000	.743

Convert 8500 CFM at 40°F and 300 Ft. Altitude To SCFM SCFM = 8500 x 1.06 x .985 = 8060 SCFM Use 8060 SCFM when Capacity and Pressure Drop Tables are used.

Formulae

Air Flow (CFM) = Feet Per Minute

(SCFM) = CFM x Air Density Conversion Factors. Note: Standard Air Has Density of .075 Lb./Cu. Ft.

Air Velocity (FPM) = CFM/Coil Face Area (Sq. Ft.) (SFPM) = SCFM/Coil Face Area (Sq. Ft.)

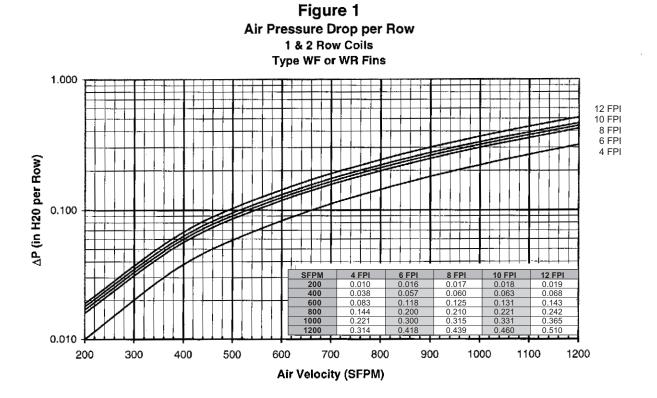
Air Temperature Rise (TR) = Leaving Dry Bulb (LDB)-Entering Dry Bulb (EDB)

Temperature Difference: = TD = Sat. Steam Temperature -Entering Dry Bulb (EDB) (Table 6)

Capacity: = $Btuh = 1.085 \times SCFM \times TR$

Condensate Rate (LB/HR) = Btuh/Steam Latent Heat (BTU/LB) Air Pressure Drop (APD) = Inches of Water

EXAMPLE


Selection Procedure Using Table Rating (Table 3): Given 6000 SCFM, 510,000 BTUH, 25 PSIG Steam, 800 SFPM Face Velocity, 70°F Entering Dry Bulb.

1.	Example Determine Coll Face Velocity (SFPM) = <u>SCFM</u> Face Area Sq. Ft.
	$800 \text{ SFPM} = \frac{6000 \times 1.00}{\text{So Et}}$
	Sq. Ft. = 7.50
	Select: 15 x 72 or 18 x 60 or 30 x 36
2.	Calculate TR $TR = \frac{Btuh}{1.085 \times SCFM}$ $= \frac{510,000}{1.085 \times 6000}$ $= 78.34^{\circ}F$
3.	Convert To StandardUse Air TemperatureRating Conditions of 5Correction Factor (Table 5)PSIG Steam, 0°FTo Convert To StandardEntering Dry BulbConditions:
	TR @ 5 PSIG, 0°EDB = $\frac{78.34}{.876}$ = 90.36F
4.	Select Row-Fin for Coll Enter Table 3 at 800 SFPM, And Select Coll with Temperature Rise of 90.4 or Greater Select 210. Note Coll Selected is 2 Row 10 Fins Per Inch.
5.	Calculate Condensate Load
Cor	Indensate Load, Ibs/hr = $\frac{Btuh}{Steam Latent Heat (Btu/lb)}$ $= \frac{510,000}{960.6} = 531 \text{ lbs/hr}$
6.	Calculate Condensate Load per Tube
	NOTE: Maximum load allowable per tube is 40 lbs/hr•tube for Colmac Steam Distributing, type FS-L Coils, 68 for type BS-L coils.
F	or 30'' FH x 36'' FL x 2 Row Coil, Total no. of tubes
	$=\frac{FH}{1.5} \times Rows = \frac{30}{1.5} \times 2 = 40$
	Cond. Load per Tube = $\frac{\text{Cond. Load}}{\text{Total no. Tubes}}$

 $=\frac{531}{40}$ = 13.3 lbs/hr+tube

Air Temperature Rise at 5 PSIG, 0° EDB (WF or WR Alum. Fins) Face Velocity, SFPM										
Row Fin	200	400	600	800	1000	1200				
104	49.7	37.6	31.8	27.8	25.3	23.2				
106	68.1	51.1	42.9	37.7	34.1	31.5				
108	77.9	58.1	48.2	42.0	37.8	34.7				
110	87.0	64.5	53.0	46.1	41.1	37.2				
112	95.0	70.0	57.6	49.6	43.9	39.7				
206	115.8	90.8	77.4	69.0	62.7	58.1				
208	138.5	109.0	93.1	82.9	74.9	69.0				
210	156.9	124.9	106.7	94.3	85.2	78.6				
212	171.5	138.1	118.1	104.2	93.9	86.3				

To determine capacity (BTUH) per sq. ft. of face area, multiply SFPM x 1.085 x Air temp. rise. To determine air temperature rise and capacity for other steam pressures and entering air temperatures, multiply rise and capacity at 5 PSIG and 0° F EDB by the appropriate temperature correction factor from table 5.

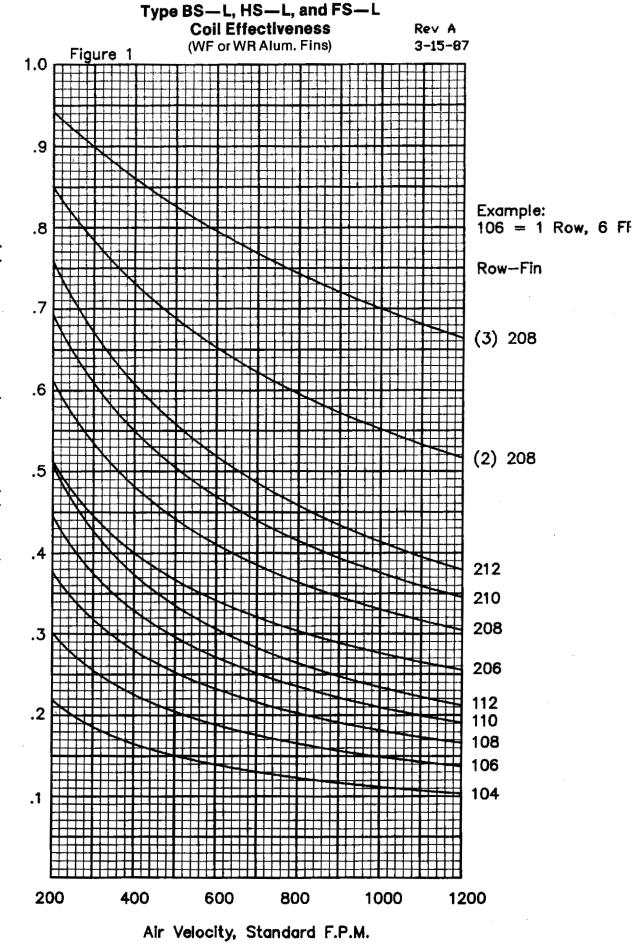
Table 5

					Air ⁻	Tempe	erature	Rise	Correc	tion F	actor				
Entering Steam Pressure, Pounds Per Square Inch Guage Air Temp.															
°F	0	2	5	10	15	20	25	30	40	50	60	80	100	150	200
-40	1.110	1.139	1.177	1.231	1.276	1.316	1.352	1.383	1.439	1.488	1.530	1.603	1.665	1.788	1.885
-30	1.066	1.095	1.187	1.232	1.187	1.272	1.307	1.339	1.395	1.444	1.486	1.559	1.621	·1.7 4 4	1.841
-20	1.022	1.051	1.089	1.143	1.188	1.228	1.263	1.295	1.351	1.400	1.442	1.515	1.577	1.700	1.796
-10	0.978	1.007	1.044	1.099	1.144	1.184	1.219	1.251	1.307	1.356	1.398	1.471	1.533	1.656	1.752
0	0.934	0.963	1.000	1.055	1.100	1.140	1.175	1.207	1.263	1.311	1.354	1.427	1.489	1.612	1.708
10	0.890	0.919	0.956	1.011	1.056	1.096	1.131	1.163	1.219	1.267	1.310	1.383	1.444	1.568	1.664
20	0.846	0.874	0.912	0.967	1.012	1.052	1.087	1.119	1.175	1.223	1.266	1.339	1.400	1.524	1.620
30	0.802	0.830	0.868	0.922	0.968	1.008	1.043	1.075	1.131	1.179	1.222	1.295	1.356	1.480	1.5 76
40	0.758	0.786	0.824	0.878	0.924	0.964	0.999	1.031	1.087	1.135	1.178	1.251	1.312	1.436	1.532
50	0.714	0.742	0.780	0.834	0.880	0.920	0.955	0.987	1.043	1.091	1.133	1.207	1.268	1.392	1.488
60	0.670	0.698	0.736	0.790	0.836	0.876	0.911	0.943	0.999	1.047	1.089	1.163	1.224	1.348	1.444
70	0.626	0.654	0.692	0.746	0.792	0.832	0.876	0.899	0.955	1.003	1.045	1.119	1.180	1.304	1.400
80	0.581	0.610	0.648	0.702	0.748	0.788	0.823	0.855	0.911	0.959	1.001	1.074	1.136	1.259	1.356
90	0.537	0.566	0.604	0.658	0.704	0.744	0.779	0.811	0.867	0.915	0.957	1.030	1.092	1.215	1.312
100	0.493	0.522	0.560	0.614	0.659	0.700	0.735	0.767	0.822	0.871	0.913	0.986	1.048	1.171	1.268
110	0.449	0.478	0.516	0.570	0.615	0.656	0.691	0.722	0.778	0.827	0.869	0.942	1.004	1.127	1.224
120	0.405	0.434	0.472	0.526	0.571	0.611	0.647	0.678	0.734	0.783	0.825	0.898	0.960	1.083	1.180
130	0.361	0.390	0.428	0.482	0.527	0.567	0.603	0.634	0.690	0.739	0.781	0.854	0.916	1.039	1.136
140	0.317	0.346	0.384	0.438	0.483	0.523	0.559	0.590	0.646	0.695	0.737	0.810	0.872	0.995	1.092
150	0.273	0.302	0.340	0.394	0.439	0.479	0.515	0.546	0.602	0.651	0.693	0.766	0.828	0.951	1.048

Correction Factor = (Steam Temperature -- Entering Air Temperature) ÷ 227.1

Table 6

P	roperties Of Ste	am
PSIG	Sat. Temp. °F	Latent Heat (Btu/Ibs.)
2	218.0	966.1
5	227.1	960.6
10	239.4	952.6
15	249.7	945.7
20	258.8	939.6
25	266.8	934.0
30	274.0	929.0
40	286.7	919.9
50	297.7	911.8
60	307.3	904.7
70	316.0	898.0
80	323.9	891.9
90	331.2	886.2
100	337.9	880.8
125	352.9	868.3
150	365.9	857.2
175	377.4	846.9
200	387.8	837.5


Example

Selection Procedure Using Curves (Figure 1)

Given 12,000 CFM, 40°F Entering Dry Bulb, 130°F Leaving Dry Bulb, 10 PSIG Steam, 36" x 72" Duct Size.

Pı	rocedure	Example
1.	Calculate Coll Face Velocity, SFPM	SFPM = $\frac{\text{SCFM}}{\text{Sq. Ft.}} = \frac{12,000 \times 1.06}{3.0 \times 6.0}$
	Note: Use A and B Factors From Table 1, 2.	SFPM = 706.7
2.	Calculate TR TD	$\frac{\text{TR}}{\text{TD}} = \frac{\text{Air Temp. Rise}}{\text{Steam TempEDB}}$
		$=\frac{130-40}{239.4-40}=.451$
3.	Select Row F	at 706.7 SFPM. Fin Having TR/TD Factor Equal or Greater Than .451. lote Coll Selected is 2 Row-12 Fins per inch.
4.	Calculate Condensate Load	
	Condensate Load, Ibs/hr = Btuh Steam Latent Heat (Btu/	$\frac{1.085 \times 12,000 \times 1.06 \times (130-40)}{952.6} = 1304 \text{lbs/hr}$
5.	Calculate Condensate Load per Tube	
No	te: Maximum load allowable per tube is 40 lbs/hr•tube Colmac Steam Distributing type FS-L coils.	for
	For 36" x 72" x 2 Row coil, total no. of tub	$bes = \frac{FH}{1.5} \times Rows = \frac{36}{1.5} \times 2 = 48$ tubes

Cond. Load per Tube =
$$\frac{\text{Cond. Load}}{\text{Total No. Tubes}} = \frac{1304}{48} = 27.2 \text{ lbs/hretube}$$

Air Temp. Rise/(Steam Temp.- Ent. Air Temp.)

COIL WEIGHTS --- DRY --- POUNDS (Cu. Tubes, Alum. Fins)

4 6044

						1 ROW													
	FINNED LENGTH																		
Fin Height	6	12	18	24	30	36	48	60	72	84	96	108	120						
6	25	28	32	38	43	50	57	71	83	93	105	115	128						
12	_	36	40	46	51	58	68	7 9	91	101	113	123	134						
18	_	_	48	54	59	67	80	94	106	118	132	145	157						
24	_	_	_	66	71	80	96	114	126	140	155	173	192						
30		_			85	93	112	131	147	164	182	200	218						
36	_	_	_	<u> </u>	_	109	129	150	170	189	206	232	250						
42			_	_	_		147	168	190	213	234	264	280						

2 ROW

	FINNED LENGTH													
Fin Height	6	12	18	24	30	36	48	60	72	84	96	108	120	
12		30	36	42	48	54	67	80	93	106	-	_		
18	_	_	47	55	63	73	90	108	125	142	160	178	196	
24	_	_		69	80	92	114	137	158	180	202	224	247	
36			_	_	<u> </u>	130	164	197	229	259	293	328	358	
42	_	_	_		—	—	200	242	279	317	361	401	437	

NOTES: 1. Weights based on 8 FPI, AL Fin Colls.

2. Shipping weight will be 40% greater than dry weight for individually shipped coils, and 20% greater for 2 or more per crate.

Application Recommendations

Install and pipe coils in accordance with standard industry practice and applicable national and local codes.

Support all piping independant of coil.

.Provide swing joints to absorb thermal expansion and contraction of coil tubes.

Make return line piping to drop leg same size as coil outlet (do not bush).

Install drip trap in steam mains ahead of coil.

Trap each coil independently and locate trap a minimum of 12 inches below return connection of coil.

•In order to handle the high condensate load during initial start up period, traps should be sized 2-3 times the rated condensate load of the coil(s).

•Install strainers ahead of valves, traps and steam distributing coils to catch dirt and scale.

•Coils should be provided with a continuous method of eliminating non condensible gases, either by automatic or continuous vents.

Minimum operating pressure recommended is 5 psig.

Coils must be installed so tubes are pitched at least 1/4 inch per foot toward return header.

•When using automatic control valves, the condensate must not be lifted into overhead return mains, or drained into return mains in which a pressure is maintained.

•Do not oversize control valves, whether automatic or manually operated. Control valves should be selected from the actual steam consumption and not from the size of the coll supply connections.

•Check valves should only be installed in horizontal lines. Only15° check valves should be used since they open under a lower head of water.

•When starting up a steam coll, the steam should be admitted at least 15 minutes before the fans are started or fresh air dampers are opened with outside air entering at 40°F or lower.

Install a vacuum breaker at the coil outlet to prevent back filling of coil with condensate during periods of low load or at shut-down.

Do not design Colmac type FS-L steam distributing coils with condensate loads of more than 40 lbs/hr+tube (see examples).

Other Quality Products From Colmac Coil

Heating and Cooling Coils

Heat Pipes for Heat Recovery

Dry Coolers for Glycol or Gas Cooling

Custom Evaporators & Baudelot Coolers

Air Cooled Condensers

CE(PED) Certification, ASME Sec. VIII, Canadian Registration Number, UL508, Canadian Standards Association

CE

Visit <u>www.colmaccoil.com</u> for more information and resources:

Product Information Product Literature Sales Rep Locator Sales Rep e-Library Product Videos

North American Headquarters

Colmac Coil Manufacturing, Inc. 370 N. Lincoln St. | P.O. Box 571 Colville, WA 99114 | USA +1.509.684.2595 | +1.800.845.6778

Midwest US Manufacturing

Colmac Coil Midwest 350 Baltimore Dr. | Paxton, IL 60957 | USA

"The Heat Transfer Experts"