

WATER HEATING COILS 5/8" OD TUBE

Type BW Hot Water Coils

"The Heat Transfer Experts"

Table of Contents

	Page
General/Features	•
Model Nomenclature	3
Basic Hot Water Coil Dimensions	4
Circuiting - Basic Water Coils	5
Equations	6
Conversion To Standard Air Volume (SCFM)	7
Selection Procedure/Example	8
Capacity Curves	9-12
Air Pressure Drop Curves	13
Water Pressure Drop/Example	14
Coil Weights	17

FEATURES

GENERAL

Colmac Type BW Hot Water Woils are certified under A<RI Standard 410. Capacities for coils having 3 or more rows are based on counterflow circuiting of water with respect to airflow. Sizing curves are based on standard air conditions, that is an air density of .075 lbs. cu. ft. with specific heat of .241."

Coils tested to 350 psig dry air under water.

TUBES:

5/8" O.D. seamless copper tubes are on 1 1/2" centers. Tubes are expanded into full length fin collars to form a tight mechanical bond. 90-10 Cupro-Nickel or Brass is available for high pressure and/or corrosive applications.

FINS:

Aluminum (1100 alloy) configured plate type fins are standard (flat plate fins available). Optional fin materials include copper and polyester-coated aluminum. 6 through 14 fins per inch, Type WF and WR, ARI certified (4 fins per inch available).

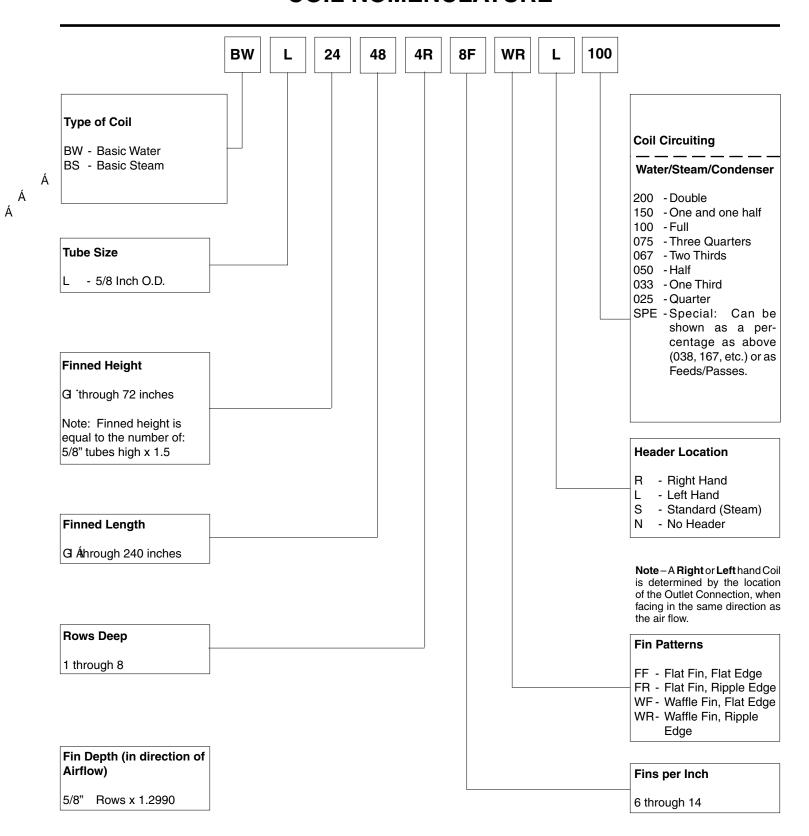
HEADERS:

Seamless copper tube, sized to minimize water pressure drop (Carbon Steel or Cupro-Nickel materials available).

CONNECTIONS:

Standard connections for basic water coils are Wrot copper M.P.T (Steel or Brass available on Basic Water Coils).

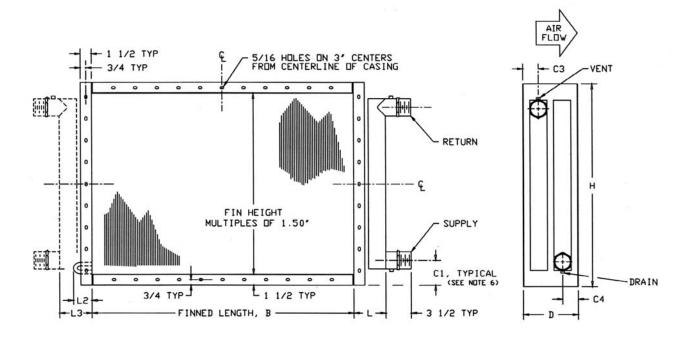
CASING:


Type BW-Basic Water Coils

Galvanized steel with extruded tubesheet holes for minimum tube wear at tubesheets.

BRAZING:

All joints brazed with high temperature copper based alloy.

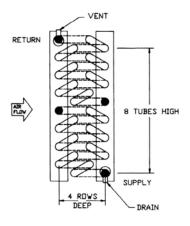

GUIDE TO COIL NOMENCLATURE

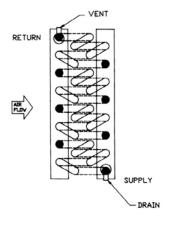
Tubes High is Determined by Dividing Finned Height by 1.50".

Note – A Right or Left hand Coil is determined by the location of the Outlet Connection when facing in the same direction as the air flow.

DIMENSIONS 5/8" Basic Water Coils

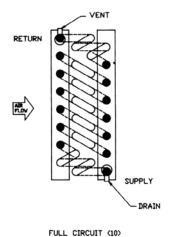
			Fin He	eight							Clean	able	Cle	anable
		6 to 17 in.	18 to 29 in.	30 to 43 in.	44 + in				Ва	sic	Removat	le Plugs	Remov	able Plugs
		Supply &	Supply &	Supply &	Supply &		Note 5		Wa	iter	Opposite S	upply End	Both Ends	
Rows	Circuiting	Return MPT	Return MPT	Return MPT	Return MPT	L	D	C3/C4	L2	L3	L2	L3	L2	L3
1	Full **	1	1 1/4	1 1/2	2	Note 3	4 1/2	2 1/4	_	Note 1	_	_	_	_
	Partial	1	1 1/4	1 1/2	2	Note 4	4 1/2	1 1/8	2 1/2	_	_	_	_	_
2	Double **	2 1/2	2 1/2	2	2 1/2	Note 3	6	3	-	Note 1	_	_	-	_
	Full / Partial	1 1/2	2	2	2 1/2	Note 4	6	1 1/2	2 1/2	_	3 3/4	_	_	_
3	_	_	_	_	_	_	_	_		_	_	_	_	_
	Full / Partial	1 1/2	2	2	2 1/2	Note 3	7	2 1/4	_	Note 1	_	Note 2	_	Note 2
4	Double	2 1/2	2 1/2	2 1/2	3	Note 3	8 1/2	3	2 1/2	-	3 3/4	_	3 3/4	-
	Full / Partial	1 1/2	2	2 1/2	3	Note 3	8 1/2	2 1/4	2 1/2	-	3 3/4	_	3 3/4	_
6	Double **	2 1/2	2 1/2	2 1/2	3	Note 3	11	3	_	Note 1	_	Note 2	_	Note 2
•	Full / Partial	1 1/2	2	2 1/2	3	Note 3	11	2 1/4	2 1/2	_	3 3/4	_	3 3/4	_
8	Double	2 1/2	2 1/2	2 1/2	3	Note 3	13 1/2	2 7/8	2 1/2	_	3 3/4	_	3 3/4	_
	Full / Partial	1 1/2	2	2 1/2	3	Note 3	13 1/2	2 1/4	2 1/2	_	3 3/4	_	3 3/4	_
10	Double **	2 1/2	2 1/2	2 1/2	3	Note 3	16	2 7/8	_	Note 1	_	Note 2	_	Note 2
	Full / Partial	1 1/2	2	2 1/2	3	Note 3	16	2 1/4	2 1/2	_	3 3/4	_	3 3/4	_
	I								1	1				

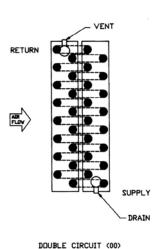

^{**}Will result in Opposite End Connections.


Notes:

- 1. Same as appropriate "L".
- 2. Add 1 3/4" to appropriate "L".
- 3. 2 1/2" plus Header Nominal OD.
- 4. 3" plus Header Nominal OD.

- 5. Consult Factory for "D" when using cleanable return bends
- 6. C1 & C2 = Flange + 1/2 Conn. Nom. OD.
- 7. Circuiting over "Full" requires 2 1/2 or larger headers.
- 8. Intermediate tube sheets provided when finned length exceeds 54".


Circuiting Basic Water Coils



HALF CIRCUIT (50)

QUARTER CIRCUIT (25)

NOTES:

1. Number of tubes is calculated as fin height divided by 1.5:

No. tubes high = Fin Height 1.5

2. To find the number of feeds for a given coil circuiting, multiply the number of tubes high as follows:

Feeds = No. tubes high x .25(1/4 CT)

Feeds = No. tubes high x .50(1/2 CT)

Feeds = No. tubes high x 1.0(FULL CT)

Feeds = No. tubes high x 2.0(DBL CT)

- 3. Right hand connections are shown in the above diagrams. Hand of connections is determined by the location of the Outlet(return) connection when facing in the same direction as airflow.
- 4. Quarter circuiting gives the highest water velocity, heat transfer, and pressure drop for given coil size, while doubling circuiting gives the lowest.
- 5. Coils may be substantially cleared of water by draining, and blowing through the tubes with compressed air, however, absolute freeze protection can only be insured by flushing the coil system with anti-freeze solution of the appropriate concentration.
- 6. Coils will have the same end connections provided the number of passes is even.

No. of passes = $\underline{\text{No. tubes high x rows deep}}$

No. of Feeds

If number of passes is an odd number, opposite end connections will result.

USEFUL EQUATIONS

A. Total BTUH – Airside

BTUH = 1.085 x SCFM x TR

Where TR = air temp. rise = lvg. air dry
bulb – ent. air dry bulb

Note: SCFM is airflow at standard conditions. To convert actual CFM to SCFM, use multipliers given in Tables 1 and 2.

- B. Total BTUH Waterside
 BTUH = 500 x GPM x WTD
 Where WTD water temp. drop = ent.
 water temp. lvg. water temp.
- C. Mass Ratio, M

 M = <u>WTD</u> = <u>1.085 x SCFM</u>

 R 500 x GPM
- D. Initial Temperature Difference, TD

 TD = Ent. water temp. Ent. air temp.
- E. Airside Effectiveness, E $E = \frac{TR}{TD}$
- F. Face Area, FA (ft²)

 FA = Fin Height x Finned Length

 144
- G. Face Velocity, SFPM = <u>SCFM</u>
 FA
- H. Water Velocity, Vw Vw = <u>GPM</u> x 1.194 FEED

Where <u>GPM</u> = <u>Total GPM</u> FEED No. of Feeds

I. Leaving Air Temperature, LAT

- J. Rows = Rt x Co x <u>SFPM</u> 100
- K. BTUH = $1.085 \times SCFM \times E \times TD$

Note: Use this equation to calculate coil performance. Find effectiveness, E, from figures 5, 6 or 7 using calculated values of M and Co.

L.
$$Co = Rows \times 100$$

Rt x SFPM

M. Rt = R1 + R2

NOTES:

- Water temperature drop (WTD) should be limited to 20 degrees F for most applications. Smaller WTD's mean higher gpm for a given BTUH and higher pressure drop.
- Leaving air temperature should be kept 5 or more degrees below entering water temperature.
- For the most cost effective selection, use the highest fins per inch allowable.
 Normally, gpm/feed should be kept at around 4 and face velocity from 500 to 1000 sfpm.

Standard Air Volume

Altitude Correction, F3
Table 1

Temperature Correction, F4 Table 2

	A I TI	TUDE			
	ALII	TUDE			
ALT	F3	ALT	F3		
0	1.000	5000	0.826		
500	0.981	5500	0.811		
1000	0.962	6000	0.796		
1500	0.944	6500	0.781		
2000	0.926	7000	0.766		
2500	0.908	7500	0.751		
3000	0.891	8000	0.736		
3500	0.875	8500	0.722		
4000	0.858	9000	0.708		
4500	0.842	9500	0.694		
5000	0.826	10000	0.680		

		TE	MPERAT	URE, DE	G F		
TEMP	F4	TEMP	F4	TEMP	F4	TEMP	F4
0	1.152	100	0.946	200	0.803	300	0.698
10	1.128	110	0.930	210	0.791	310	0.689
20	1.104	120	0.914	220	0.779	320	0.680
30	1.082	130	0.898	230	0.768	330	0.671
40	1.060	140	0.883	240	0.757	340	0.662
50	1.039	150	0.869	250	0.746	350	0.654
60	1.019	160	0.855	260	0.736	360	0.646
70	1.000	170	0.841	270	0.726	370	0.638
80	0.982	180	0.828	280	0.716	380	0.631
90	0.964	190	0.815	290	0.707	390	0.624
100	0.946	200	0.803	300	0.698	400	0.617

To convert from actual CFM to SCFM (STD AIR):

SCFM = CFM X F3 X F4

Example:

Convert 2000 CFM at 500 ft. and 80°F to SCFM.

F3 for 5000 ft. elev. = .826 F4 for 80°F = .982

So, SCFM = $2000 \times .826 \times .982 = \underline{1622}$

SELECTION PROCEDURE

To illustrate the coil selection procedure, the following example problem is given:

n:	Total BTUH:	65,100
	SCFM:	1,500
	Ent.Air Temp.(° F):	60
	GPM:	6.5
	Ent. Water Temp.(° F):	160
	Coil Size:	12" FH x 24" FL
	Max. Water Press Drop:	10 ft. H20
	Max Air Press Drop:	.5 in. H20

SOLUTION:

A) First, determine the lowest number of feeds possible without exceeding the water pressure drop. To do so, a number of feeds must be assumed and the gpm/feed and water velocity calculated. Divide gpm by 4 to find an initial number of feeds.

No.feeds =
$$\frac{6.5}{4}$$
 = 1.625(or about 2)
Initial gpm/feed = $\frac{6.5}{2}$ = $\frac{3.25}{2}$

At this point, rows must also be assumed. Let coil rows = 2.

B) Calculate water pressure drop by following the example on page 15, and using Figure 10 and Tables 3 through 8.

Water pressure drop, WPD = <u>5.76 ft. H20</u> (This is within our limit of 10 ft. and is acceptable.)

- C) From figure 1, find R1 for gpm/feed = 3.25 R1 = .11
- D) Calculate the face area, FA FA = $\frac{\text{FH x FL}}{144}$ = $\frac{12 \times 24}{144}$ = $\frac{2.0 \text{ ft}^2}{144}$
- E) Calculate face velocity, FV FV = <u>SCFM</u>

F) Calculate the mass ratio, M

$$M = \frac{1.085 \times SCFM}{500 \times GPM}$$
$$= \frac{1.085 \times 1500}{500 \times 6.5} = .50$$

G) Calculate air temperature rise, TR

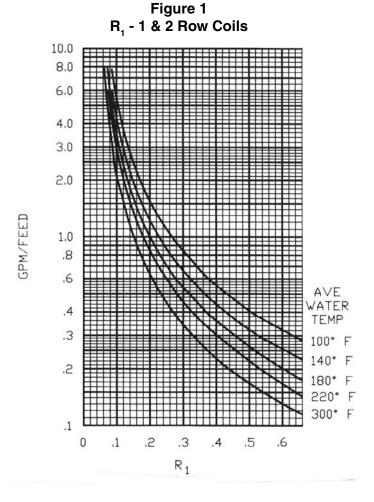
H) Calculate effectiveness, E

$$E = \frac{TR}{TD} = \frac{40}{160 - 60} = .40$$

I) Find Co from figure 6, using

$$Co = .58$$

J) Calculate total resistance, Rt

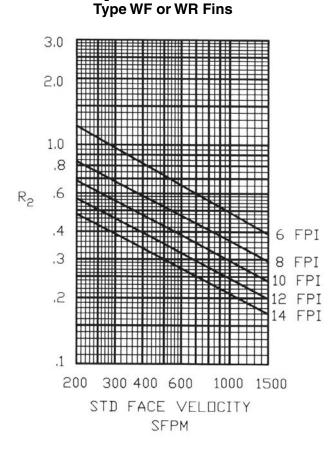
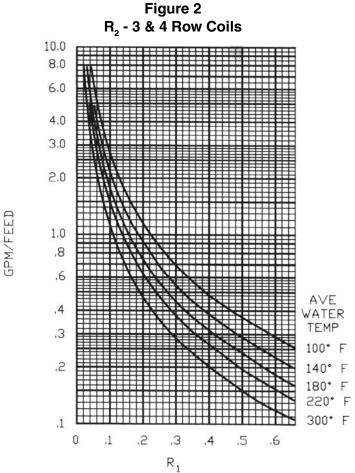
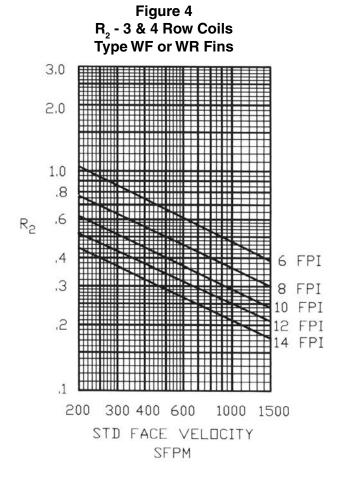

Rt =
$$\frac{\text{Rows x 100}}{\text{Co x SFPM}}$$
 = $\frac{2 \times 100}{.58 \times 750}$ = .4598

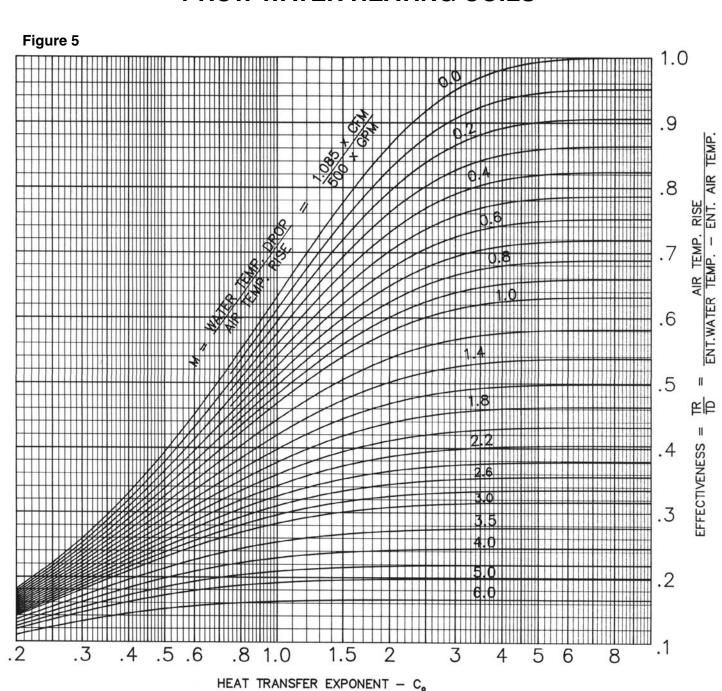
K) Calculate R2

- L) Select fin spacing from Figures 3 or 4, on page 10. The calculated value of R2 (from step "K") must fall on or above the selected FPI line. For the example, pick 10 fins per inch from Figure 3.
- M) Air pressure drop is calculated using A1 from Figure 8, A1 = .195

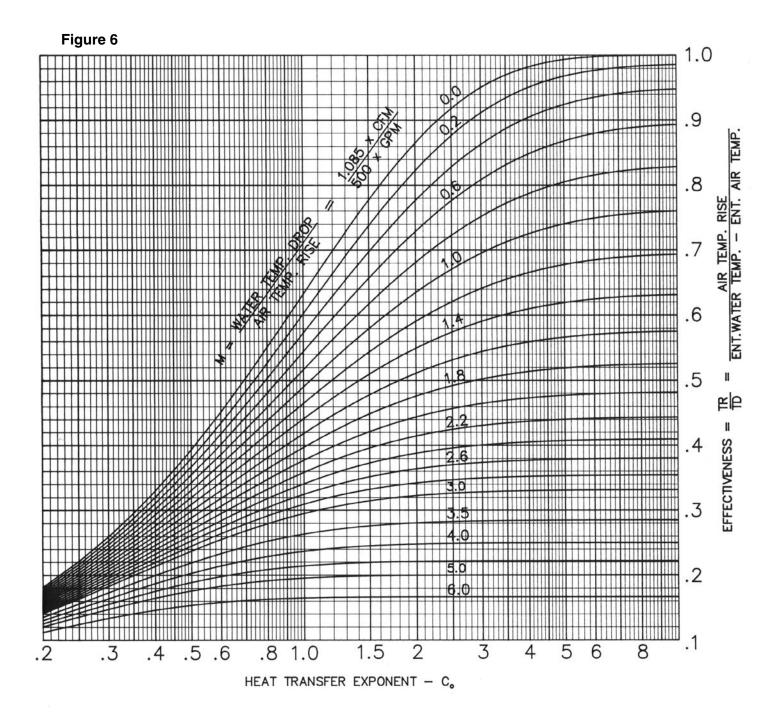
(This is within the limit of .5 inches given in the example and is acceptable.)

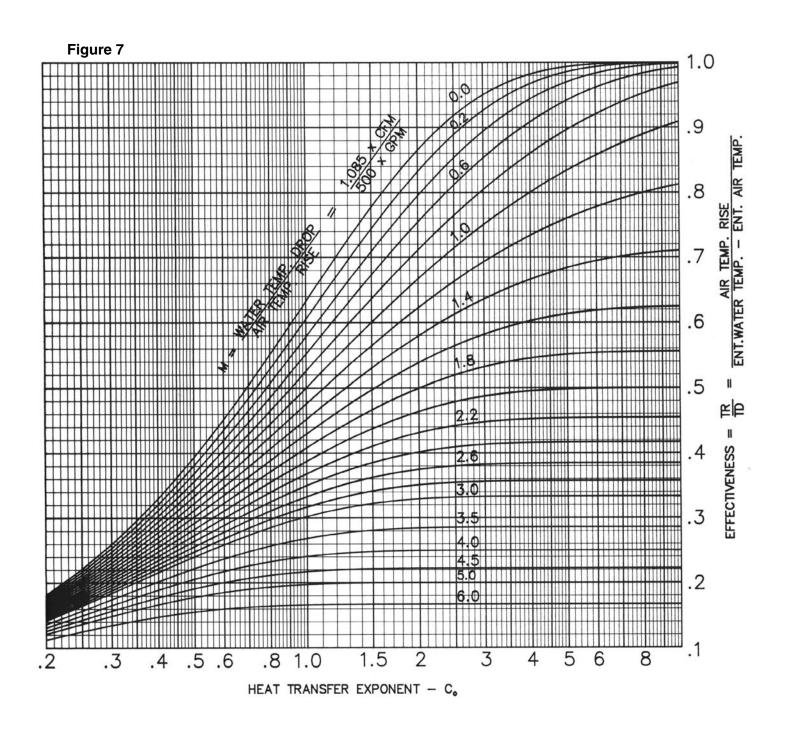
N) In summary, the selection is & row, 10 fin per inc\

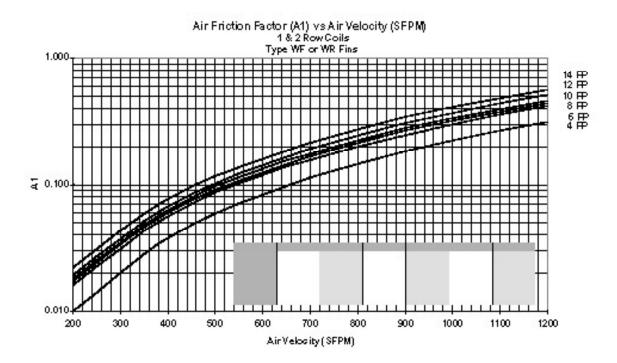




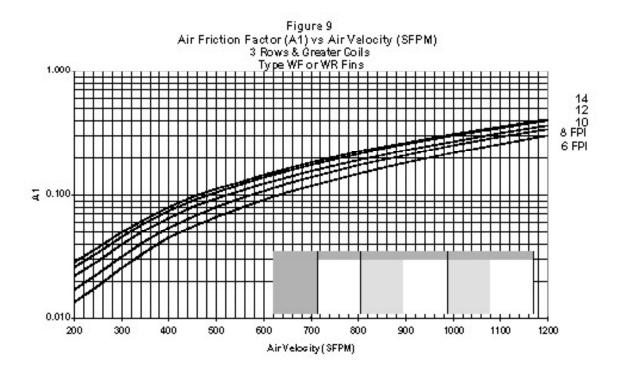

Figure 3

R₂ - 1 & 2 Row Coils




HEAT TRANSFER EXPONENT – C_o 1 ROW WATER HEATING COILS


HEAT TRANSFER EXPONENT – C_o 2 ROW WATER HEATING COILS



HEAT TRANSFER EXPONENT – C_o 3 & 4 ROW WATER HEATING COILS

Air Friction

WATER PRESSURE DROP

Water pressure drop is calculated using the following formula:

EXAMPLE:

Using data from the example on page 12:

Given:

Coil size: 12" FH x 24" FL

GPM: 6.5 Ent. water temp: 160 Total BTUH: 65100

No. feeds: 2 fei Uf h/f 'VIJf Wi]h/L

Rows: 2

SOLUTION:

A) Calculate water velocity,

$$Vw = \underline{gpm}_{no. feeds} \times 1.194 = \underline{6.5} \times 1.194 = 3.88 \text{ fps}$$

B) From figure 10, find F1 for 3.88 fps,

$$F1 = .127$$

C) Determine header pressure drop, HPD. Use tables 3 through 6 for type BW coils:

$$HPD = 0.34$$

D) Calculate average water temperature by the following formula:

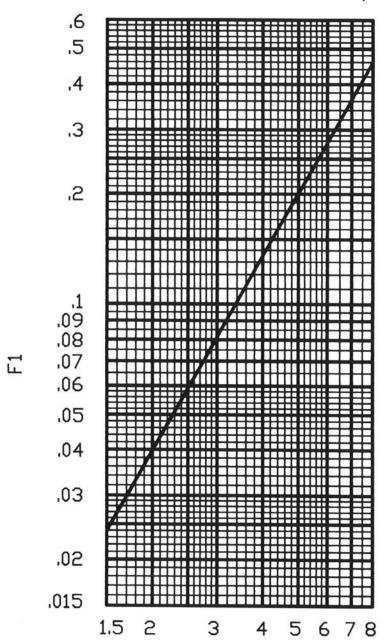
$$T_{ave} = ent. water - WTD x 1/2$$

where WTD = $\frac{TOTAL BTUH}{500 x GPM}$
WTD = $\frac{65100}{500 x 6.5} = 20^{\circ}F$
 $T_{ave} = 160 - 20 x 1/2$
= 150°F

E) From Table 7, find Ft

$$Ft = .775$$

F) Calculate equivalent circuit length, LE, using the following:


LE = .0833 x
$$\left[\left(\frac{\text{FL x FH x Rows}}{1.5 \text{ x no. feeds}} \right) \right] + 18 \text{ x } \left(\frac{\text{FH x Rows}}{1.5 \text{ x no. feeds}} - 1 \right) \right]$$

LE = .0833 x $\left[\left(\frac{24 \text{ x } 12 \text{ x } 2}{1.5 \text{ x } 2} \right) + 18 \text{ x } \left(\frac{12 \text{ x } 2}{1.5 \text{ x } 2} - 1 \right) \right]$
= 26.5 ft.

G) Calculate water pressure drop,

WPD =
$$(0.34 + 26.5 \times .127) \times .775$$

WPD = 2.87 ft.

Figure 10 WATER FRICTION FACTOR, F1

WATER VELOCITY Vw, ft/sec

34

36

.04

.04

.14

.15

Type BWHeader Pressure Drop HPD, ft H₂0

		w		ole 3 Circuit ocity, F		Table 4 Full Circuit Water Velocity, FPS							
No. Tubes High	1	2	3	4	6	8	No. Tubes High	1	2	3	4	6	8
8	.22	.83	1.85	3.22	7.20	12.75	8	.07	.27	.61	1.07	2.40	4.22
10	.33	1.30	2.85	5.00	10.20	19.98	10	.11	.42	.94	1.66	3.70	6.50
12	.16	.57	1.21	2.11	4.50	7.75	12	.05	.19	.41	.72	1.59	2.74
14	.22	.77	1.65	2.80	6.05	10.50	14	.07	.25	.56	.99	2.12	3.70
16	.27	.98	2.11	3.60	7.75	13.45	16	.09	.33	.72	1.24	2.74	4.78
18	.33	1.21	2.64	4.50	9.80	17.00	18	.11	.41	.91	1.59	3.42	6.00
20	.15	.55	1.18	2.00	4.15	7.00	20	.05	.20	.44	.75	1.64	2.82
22	.18	.64	1.39	2.35	4.90	8.40	22	.07	.25	.53	.91	1.97	3.35
24	.23	.76	1.61	2.74	5.80	9.99	24	.08	.29	.62	1.08	2.30	4.00
26	.25	.88	1.88	3.20	6.75	11.40	26	.09	.34	.73	1.24	2.70	4.64
28	.29	1.01	2.15	3.60	7.70	13.10	28	.10	.39	.84	1.44	3.09	5.28
30	.14	.50	1.05	1.80	3.79	6.40	30	.05	.19	.41	.70	1.50	2.60
32	.16	.56	1.19	2.00	4.20	7.10	32	.06	.21	.46	.78	1.70	2.92
34	.18	.62	1.30	2.25	4.70	7.99	34	.06	.24	.51	.87	1.89	3.30
36	.20	.70	1.46	2.50	5.20	8.98	36	.07	.27	.57	.99	2.25	3.65

		Wa	ater Vel	ocity, F	PS	
No. Tubes High	1	2	3	4	6	8
8	.03	.12	.27	.48	1.08	1.75
10	.05	.15	.42	.75	1.65	2.89
12	.02	.09	.19	.33	.72	1.26
14	.03	.12	.25	.44	.98	1.75
16	.04	.15	.33	.57	1.26	2.17
18	.05	.19	.41	.72	1.59	2.75
20	.03	.11	.24	.42	.92	1.62
22	.03	.13	.29	.51	1.11	1.95
24	.04	.15	.34	.60	1.31	2.30
26	.05	.18	.41	.69	1.54	2.71
28	.05	.21	.46	.82	1.79	3.12
30	.03	.11	.23	.40	.88	1.52
32	.03	.12	.26	.45	1.00	1.75

.30

.33

.52

.57

1.10

1.25

1.95

2.20

Table 5
Half Circuit

Table 6 Quarter Circuit Water Velocity, FPS										
No. Tubes High	1	2	3	4	6	8				
8	.02	.08	.19	.34	.75	1.31				
12	.01	.05	.12	.22	.48	.86				
16	.02	.10	.22	.39	.86	1.52				
20	.02	.08	.18	.32	.72	1.27				
24	.03	.12	.26	.46	1.01	1.80				
28	.04	.16	.35	.63	1.40	2.50				
32	.02	.09	.20	.35	.78	1.36				
36	.03	.11	.25	.44	.99	1.73				

Water Friction	Water Friction Temperature Correction Factor, F _t												
AVE. WATER TEMP.M°F	100	140	180	200	220	240	260						
CORRECTION FACTOR	.88	.79	.73	.70	.68	.65	.63						

Table 7

COIL WEIGHTS - DRY - POUNDS FINNED LENGTH INCHES

Rows He	Fin eight 12 15 18 21 24 27 30	12 17 19 22 27 30	18 20 23 26 32	24 23 27	30 27 31	36 30	42 34	48 37	54	60	66	72	78	84	90	96	102	108	114	120
1 2 2 2	12 15 18 21 24 27	17 19 22 27	20 23 26	23 27	27				_		66	72	78	84	90	96	102	108	114	120
1 2 2 2	12 15 18 21 24 27	19 22 27	23 26	27		30	34	37	4.4											
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	15 18 21 24 27	19 22 27	23 26	27		50	J4		47	44	47	51	54	58	61	64	68	71	75	78
1 2 2	18 21 24 27	22	26		31				41						_					
1 2	21 24 27	27			٠.	34	38	42	46	50	53	57	61	65	69	72	76	80	84	88
2	24 27			30	34	38	43	47	51	55	59	64	68	72	76	80	84	89	93	97
2	24 27			36	41	45	50	54	59	64	68	73	77	82	86	91	96	100	105	109
2	27	30																		
		•	35	40	45	50	55	59	64	69	74	79	84	89	94	99	104	109	114	119
3	30	33	38	43	49	54	59	65	70	76	81	86	92	97	102	108	113	118	124	129
		42	48	54	60	65	71	77	83	88	94	100	106	111	117	123	129	134	140	146
	-																		_	
3	33	46	52	58	64	70	76	83	89	95	101	107	113	119	126	132	138	144	150	156
3	36	49	56	62	69	75	82	88	95	102	108	115	121	128	134	141	147	154	160	167
	12	20	25	30	35	40	45	50	55	60	64	69	74	79	84	89	94	99	104	109
	15	23	29	35	40	46	52	58	63	69	75	81	86	92	98	104	109	115	121	127
														_						
1	18	26	33	39	46	52	59	66	72	79	85	92	98	105	111	118	124	131	137	144
	21	32	40	47	54	62	69	76	84	91	98	106	113	120	127	135	142	149	157	164
2	24	36	44	52	60	68	76	84	93	101	109	117	125	133	141	149	157	165	173	181
2	27	40	49	57	66	75	84	93	102	111	120	128	137	146	155	164	173	182	190	199
3	30	50	60	69	79	89	98	108	118	127	137	147	156	166	176	185	195	205	214	224
	33	54	65	75	86	96	107	117	127	138	148	159	169	180	190	200	211	221	232	242
_	36	59	70	81	92	103	115	126	137	148	160	171	182	193	204	216	227	238	249	260
1	12	28	37	45	54	62	71	79	88	96	105	113	122	130	139	147	155	164	172	181
1	15	33	43	53	63	73	83	93	103	114	124	134	144	154	164	174	184	194	204	214
-	18	38	50	61	73	85	96	108	119	131	143	154	166	178	189	201	212	224	236	247
14 🗆	21	46	59	72	86	99	112	125	138	151	165	178	191	204	217	230	244	257	270	283
T 2	24	51	66	81	95	110	125	140	154	169	184	199	213	228	243	258	272	287	302	316
2	27	57	73	89	106	122	138	155	171	187	203	220	236	252	269	285	301	318	334	350
-	30	69	87	105	123	140	158	176	194	212	230	248	265	283	301	319	337	355	373	390
3	33	75	94	114	133	153	172	191	211	230	250	269	289	308	327	347	366	386	405	424
3	36	81	102	123	144	165	186	207	228	249	270	291	312	333	354	375	396	417	438	459
1	12	36	48	60	72	84	96	108	121	133	145	157	169	181	193	205	217	229	241	253
	15	43	58	72	86	101	115	129	144	158	172	187	201	216	230	244	259	273	287	302
		_																		
1	18	50	67	83	100	117	133	150	167	184	200	217	234	250	267	284	301	317	334	351
	21	60	79	98	117	136	155	174	193	212	231	250	269	288	307	326	345	364	383	402
6 -2	24	67	88	109	131	152	174	195	216	238	259	280	302	323	345	366	387	409	430	451
	27	74	98	121	145	169	193	216	240	264	287	311	335	359	382	406	430	453	477	501
3	30	88	114	140	166	192	218	244	270	296	322	349	375	401	427	453	479	505	531	557
3	33	96	124	152	181	209	238	266	294	323	351	380	408	436	465	493	522	550	578	607
 	36	103	134	165	196	226	257	288	319	349	380	411	442	472	503	534	565	595	626	657
	12	45	60	76	91	107	122	138	153	169	185	200	216	231	247	262	278	293	309	325
1	15	53	72	91	109	128	147	165	184	203	221	240	259	277	296	315	333	352	371	389
1	18	62	84	105	127	149	171	193	214	236	258	280	301	323	345	367	389	410	432	454
	21	73	98	123	148	173	198	223	248	272	297	322	347	372	397	422	447	472	497	522
\sqcup X \sqsubseteq																				
	24	82	110	138	166	194	222	250	278	306	334	362	390	418	446	474	502	530	558	586
2	27	91	122	153	184	216	247	278	309	340	371	403	434	465	496	527	558	589	621	652
	30	107	141	175	210	244	278	312	347	381	415	449	484	518	552	587	621	655	689	724
3	33	116	154	191	228	266	303	341	378	415	453	490	528	565	602	640	677	715	752	789
3	36	126	166	207	247	288	328	369	409	450	490	531	571	612	652	693	734	774	815	855

NOTES:

- 1.
- FOR WATER COIL OPERATING WEIGHTS, ADD DRY COIL WEIGHT TO 1.32 X FACE AREA X ROWS [(WOP = WDRY + (1.32 X FDA X 12)] WEIGHTS BASED ON 10 FPI COILS; VARIANCE FOR 6, 8, AND 12 FPI IS LESS THAN 5% OF LISTED WEIGHT.

Other Quality Products From Colmac Coil

Heat Pipes for Heat Recovery

Dry Coolers for Glycol or Gas Cooling

Custom Evaporators & Baudelot Coolers

Air Cooled Condensers

CE(PED) Certification, ASME Sec. VIII, Canadian Registration Number, UL508, Canadian Standards Association

CRN

CSA

Visit www.colmaccoil.com for more information and resources:

Product Information
Product Literature
Sales Rep Locator
Sales Rep e-Library
Product Videos

North American Headquarters

Colmac Coil Manufacturing, Inc. 370 N. Lincoln St. | P.O. Box 571 Colville, WA 99114 | USA +1.509.684.2595 | +1.800.845.6778

Midwest US Manufacturing

Colmac Coil Midwest 350 Baltimore Dr. | Paxton, IL 60957 | USA